掌握 Redmine 的活動指標:繪製熱度圖

我們平常使用 Redmine 來管理專案,當需要進行 Review 或討論如何改善時,常常需要基於 Redmine 的數據。由這些數據分析,也能得知團隊執行狀況是否順利。但是 Redmine 本身並沒有整合 Dashboard 的功能,因此需要透過 RESTful API 來取得專案資料,再使用第三方軟體繪製成圖表。

安裝 python-redmine

由於 Python 是我熟悉的腳本語言,選擇用 Python 來進行 Proof of Concept,首先安裝相關的 Python 套件

python -m pip install python-redmine

如果電腦有支援 pip 指令,可以直接用

pip3 install python-redmine

來安裝。

Windows 的 pip 使用可能跟 Ubuntu 不同,至少我還沒找到用法,這邊選擇用 option-m 的模組執行方式,來執行 python 內的 pip module,效果跟 pip 相同,只是命令比較不直覺。

登入 redmine

python-redmine 已經將 redmine 的 API 指令封裝成 python 的語法,直接調用即可,我們先使用帳號密碼登入 redmine

from redminelib import Redmine
redmine = Redmine('http://demo.redmine.org', username='foo', password='bar')

第一個參數填入 redmine 所在的 url,後面帶自己的帳號與密碼,如果無法登入,可以參考官網說明,請管理員將 REST API 打開。

取得 issue 列表

我的目標是取得 redmine 上的所有 issue。其中包含 assign 給我的 issue 量、我已經處理完成的 issue 量,藉此來觀察專案的成果。

首先是 assign 給我的數量

issues = redmine.issue.filter(
    project_id='demo',
    status_id='*',
    assigned_to_id=me
)
print("Total opened count is: " + str(issues.total_count))

filter 可以設定要取回的 issues 條件;我要取回的是在 demo 專案下、任意狀態、assign 給我的 issues。

同樣的,我們也可以取得我已經完成的 issue

issues_closed = redmine.issue.filter(
    project_id='demo',
    status_id='closed',
    assigned_to_id='me'
)
print("Total closed count is: " + str(issues_closed.total_count))

畫出 Heatmap

接著,我希望可以將平常在 redmine 上的活動畫成 heatmap,畢竟對專案而言,活躍度是非常重要的指標,而活躍度的指標之一就是更新頻率。遍歷所有的 issue,查詢底下的 journal 是否是由我發出,如果是的話,在 heatmap data array 的對應欄位 +1,藉此統計活動狀況。

import re
import datetime
import numpy
week_start = int(datetime.date(2019, 3, 3).strftime("%V"))
week_end = int(datetime.date(2019, 8, 31).strftime("%V"))
week_duration = week_end - week_start + 1
journal_ken = 0
data_arr = numpy.zeros((7, week_duration))
p = re.compile("(\d{4})-(\d{2})-(\d{2})")
for issue in issues:
    for resource in issue.journals._resources:
        if not resource['user']['name'] == "Ken Chen": continue
        match = p.match(resource['created_on'])
        if not int(match.group(1)) == 2019: continue
        journal_ken += 1
        week = int(datetime.date(2019, int(match.group(2)), int(match.group(3))).strftime("%V"))
        weekday = int(datetime.date(2019, int(match.group(2)), int(match.group(3))).strftime("%w"))
        data_arr[weekday][week - week_start] += 1
print("Total journal of Ken is: " + str(journal_ken))

week_start 、 week_end 、 week_duration 用來限制時間範圍,使用正則表達式來判斷 journal 的時間是否落在指定的區段, journal_ken 用來統計總數。

得到資料陣列後,就能使用 seaborn 畫成圖

import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
ax = sns.heatmap(
    data_arr
)
plt.show()

修飾 Heatmap

預設圖片跟想要呈現的效果有段落差,如果直接拿出去,大概會立刻被打槍,這邊需要進行一些美化,使用 seaborn 的參數來調整

data_masks = numpy.zeros((7, week_duration))
for i in range(7):
    for j in range(week_duration):
        if data_arr[i][j] == 0: data_masks[i][j] = 1
ax = sns.heatmap(
    data_arr, 
    cmap = 'Blues', 
    mask=data_masks, 
    yticklabels = ["Sun","Mon","Tue","Wed","Thu","Fri","Sat"], 
    linewidths = 1, 
    square = True,
    cbar = False
)
ax.set_ylim(0,7)
plt.show()

修改顏色;加入遮罩遮掉值是 0 的區段;加入 y 軸標示;加粗格線;讓顯示的區塊為方形;拿掉色彩條。 ax.set_ylim 則是因為 matplotlib 本身的 Bug 會導致圖片只畫一半

如果不想用開發中的版本,要不就等 3.1.2 版,要不就退回 3.1.0 版,要不就使用 ax.set_ylim 。我不太想動版本,只好乖乖使用指令來調整。

當一切就緒後,我們就可以得到

小結

稍微用 python 開個小小的 side project,就能體會到用 python 來驗證概念的威力。由於有完整的生態系,python 適合快速開發,快速驗證,很快就能知道自己的想法是否行得通,不用花費一堆時間蓋完基礎建設後,才發現由於需要的 API 沒開出來,導致專案 Fail。

資料視覺化真的是很有意思的題目,如果有機會的話,很想將整個團隊的資料即時視覺處理,跑專案時只要進到戰情室就能一目了然。

最後,我對 python 不支援 var++ 的用法有點意見,對 C 語言的工程師來講不太友善。

Reference

Read more

Weekly Issue 第 7 期:從 GitHub Spark 看 Prompt 工程

近期開始有人建議用 Context Engineering 來取代 Prompt Engineering,的確相較於 Prompt,Context 是更精確的用詞。前一期也提到,當 Duolingo 的 CEO 被問到 AI 是否只是模型套皮時,他也說模型一定有影響,但更多是關乎你的 Context。 那麼,業界現在是如何看待 Prompt 的呢?Github Spark 跟 V0 的例子或許能提供一些參考。 🗞️ 熱門新聞 Using GitHub Spark to reverse engineer GitHub Spark GitHub Spark 最近推出公開預覽,讓你可以用 prompt 直接開發應用。 作者用逆向工程,找出 Spark 的 system

By Ken Chen

Weekly Issue 第 6 期:Duolingo CEO 看 AI 與遊戲化

現在是 AI 時代,大家都在想怎麼讓自己的產品跟 AI 掛勾,但具體要怎麼做呢?背後的思考有哪些?Duolingo 給出他們自己的觀點。 例如,現在的產品是否只是 AI 套皮,你接收使用者的問題,套上自己的提詞後,拿去給 OpenAI,要它回答你?在現在百家爭鳴的情況下,選擇哪個模型會有差嗎?AI 能帶來新用戶與新營收嗎?等等。 另外本週也選了一篇少數派的文章,談 AI 對 RSS 的影響,對 RSS 未來方向有興趣的人不妨看看。 🗞️ 熱門新聞 Duolingo CEO Luis von Ahn wants you addicted to learning Duolingo CEO 專訪,相當紮實,推薦閱讀。 「對我們來說,

By Ken Chen

Weekly Issue 第 5 期:OpenAI 的企業文化

我一直都喜歡看科技公司的願景與文化,原因是,我想知道別人是如何看待自己的使命,又是用什麼方式打造它。願景通常在官網都會有,但想要知道文化,只能聽內部人講講了。 Palantir 前陣子因為它不同於矽谷的文化,而引起很多討論。受此影響,前 OpenAI 的員工在離職創辦公司後,也發文談論他所見到的 OpenAI。最讓我震撼的是,他們幾乎沒有資金困擾,想的都是如何打造出色的 AI 模型。 🗞️ 熱門新聞 Reflections on OpenAI 前員工談 OpenAI 的內部文化。 讀起來最大的感觸是,有些價值觀、觀點、實踐,只有在世界級的公司跟資源下,才有可能建立起來。讓每個團隊各自為政,看誰能端出最好的成果,這對新創(特別是沒拿創投)實在太奢侈了。 我相信這種經歷會變成是「可以帶著走的饗宴」,那種衝擊也是最寶貴的。 AI Open Source Productivity METR 前陣子發了一篇研究,說使用 AI

By Ken Chen

Weekly Issue 第 4 期:Canonical 的面試經驗

這星期看了比較多職涯相關的內容,最讓我驚訝的是 Canonical 的面試流程,當我分享這則新聞後,有更多朋友紛紛補充他們的面試經驗:需要經歷三個 Tier,每個 Tier 都有三關,而內容甚至還包括問人選「高中成績」與「大學生活」。 我很難想像一家做 Linux 發行版的公司,會如此草率對待人選,這讓我對他們家的產品有了很大的問號。 🗞️ 熱門新聞 My experience with Canonical's interview process 這是一篇 Canonical 的面試經歷(如果你不知道什麼是 Canonical,就是開發 Ubuntu 的公司)。 整個過程讓人非常驚訝,甚至還需要人選回答「高中成績」,而在面試中做筆記居然是扣分項。我看完後有股移除 Ubuntu 的衝動。真的太扯啦。 What happens when engineers work

By Ken Chen